The state of s #### **BUREAU OF PUBLIC WATER SUPPLY** # CALENDAR YEAR 2010 CONSUMER CONFIDENCE REPORT CERTIFICATION FORM #### TOWN OF OSYKA Public Water Supply Name 570010 List PWS ID #s for all Water Systems Covered by this CCR The Federal Safe Drinking Water Act requires each *community* public water system to develop and distribute a consumer confidence report (CCR) to its customers each year. Depending on the population served by the public water system, this CCR must be mailed to the customers, published in a newspaper of local circulation, or provided to the customers upon request. Please Answer the Following Questions Regarding the Consumer Confidence Report | <u>XX</u> | Customers we | ere informed of availability of CCR by: (Attach copy of publication, water bill or other) | |-----------|------------------|--| | | $\frac{X}{X}$ | Advertisement in local paper On water bills Other | | | Date custom | ners were informed: 05 / 17 / 2011 | | | CCR was di | stributed by mail or other direct delivery. Specify other direct delivery methods: | | | Date Mailed/I | Distributed: / / | | | CCR was pub | lished in local newspaper. (Attach copy of published CCR or proof of publication) | | | Name of New | spaper: | | | Date Publishe | d:/ | | xx | CCR was pos | ted in public places. (Attach list of locations) | | | Date Posted:_ | 05 / 17 / 2011 | | □
www | | ted on a publicly accessible internet site at the address: | | CERT | <u>IFICATION</u> | | | correct | and is consiste | consumer confidence report (CCR) has been distributed to the customers of this public water manner identified above. I further certify that the information included in this CCR is true and ent with the water quality monitoring data provided to the public water system officials by the artment of Health, Bureau of Public Water Supply. | | Şa, | mi W. F | May 16, 2011 | | (yame) | uie (Presiaen | t, Mayor, Owner, etc.) Date | Mail Completed Form to: Bureau of Public Water Supply/P.O. Box 1700/Jackson, MS 39215 Phone: 601-576-7518 # TOWN OF OSYKA - 570010 2010 ANNUAL DRINKING WATER QUALITY REPORT #### Is my water safe? We are pleased to present this year's Annual Water Quality Report (Consumer Confidence Report) as required by the Safe Drinking Water Act (SDWA). This report is designed to provide details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. This report is a snapshot of last year's water quality. We are committed to providing you with information because informed customers are our best allies. #### Do I need to take special precautions? Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791). #### Where does my water come from? Our water source is from two deep wells drawing from the Miocene Series Aquifer. #### Source water assessment and its availability Our source water assessment has been completed. Our wells have had no contamination this past year. For a copy of this report, please contact our office at 601-542-5041. Why are there contaminants in my drinking water? Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791). The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity: microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses; organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems; and radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health. #### How can I get involved? If you have questions about this report or concerns about your water utility, please contact Mayor Jamie W. Harrell at 601-542-5041. We want our valued customers to be informed about their water utility. If you want to learn more, please attend our monthly board meeting held on the first Thursday, of each month at 5:45 p.m. #### **Description of Water Treatment Process** Your water is treated by disinfection. Disinfection involves the addition of chlorine or other disinfectant to kill dangerous bacteria and microorganisims that may be in the water. Disinfection is considered to be one of the major public health advances of the 20th century. #### Water Conservation Tips Did you know that the average U.S. household uses approximately 400 gallons of water per day or 100 gallons per person per day? Luckily, there are many low-cost and no-cost ways to conserve water. Small changes can make a big difference – try one today and soon it will become second nature. - Take short showers a 5 minute shower uses 4 to 5 gallons of water compared to up to 50 gallons for a bath. - Shut off water while brushing your teeth, washing your hair and shaving and save up to 500 gallons a month. - Use a water-efficient showerhead. They're inexpensive, easy to install, and can save you up to 750 gallons a month. - Run your clothes washer and dishwasher only when they are full. You can save up to 1,000 gallons a month. - Water plants only when necessary. - Fix leaky toilets and faucets. Faucet washers are inexpensive and take only a few minutes to replace. To check your toilet for a leak, place a few drops of food coloring in the tank and wait. If it seeps into the toilet bowl without flushing, you have a leak. Fixing it or replacing it with a new, more efficient model can save up to 1,000 gallons a month. - Adjust sprinklers so only your lawn is watered. Apply water only as fast as the soil can absorb it and during the cooler parts of the day to reduce evaporation. - Teach your kids about water conservation to ensure a future generation that uses water wisely. Make it a family effort to reduce next month's water bill! - Visit www.epa.gov/watersense for more information. #### **Cross Connection Control Survey** The purpose of this survey is to determine whether a cross-connection may exist at your home or business. A cross connection is an unprotected or improper connection to a public water distribution system that may cause contamination or pollution to enter the system. We are responsible for enforcing cross-connection control regulations and insuring that no contaminants can, under any flow conditions, enter the distribution system. If you have any of the devices listed below please contact us so that we can discuss the issue, and if needed, survey your connection and assist you in isolating it if that is necessary. - Boiler/ Radiant heater (water heaters not included) - Underground lawn sprinkler system - Pool or hot tub (whirlpool tubs not included) - Additional source(s) of water on the property - Decorative pond - Watering trough Protection of drinking water is everyone's responsibility. You can help protect your community's drinking water source in several ways: - Eliminate excess use of lawn and garden fertilizers and pesticides they contain hazardous chemicals that can reach your drinking water source. - Pick up after your pets. - If you have your own septic system, properly maintain your system to reduce leaching to water sources or consider connecting to a public water system. - Dispose of chemicals properly; take used motor oil to a recycling center. - Volunteer in your community. Find a watershed or wellhead protection organization in your community and volunteer to help. If there are no active groups, consider starting one. Use EPA's Adopt Your Watershed to locate groups in your community, or visit the Watershed Information Network's How to Start a Watershed Team. - Organize a storm drain stenciling project with your local
government or water supplier. Stencil a message next to the street drain reminding people "Dump No Waste Drains to River" or "Protect Your Water." Produce and distribute a flyer for households to remind residents that storm drains dump directly into your local water body. #### Additional Information for Lead If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. TOWN OF OSYKA is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. # **Water Quality Data Table** In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of contaminants in water provided by public water systems. The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. Although many more contaminants were tested, only those substances listed below were found in your water. All sources of drinking water contain some naturally occurring contaminants. At low levels, these substances are generally not harmful in our drinking water. Removing all contaminants would be extremely expensive, and in most cases, would not provide increased protection of public health. A few naturally occurring minerals may actually improve the taste of drinking water and have nutritional value at low levels. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. As such, some of our data, though representative, may be more than one year old. In this table you will find terms and abbreviations that might not be familiar to you. To help you better understand these terms, we have provided the definitions below the table. | <u>Contaminants</u> | MCLG
or
MRDLG | MCL,
TT, or
MRDL | Your
Water | Ra
<u>Low</u> | nge
High | Sample
Date | Violation | Typical Source | |---|--------------------------|------------------------|---------------------|------------------|-------------|----------------|----------------|---| | Disinfectants & Disin | The second second second | 2017-14-1-15-0-0-25-0 | - FERSON CORP. WITE | | | | I. | | | (There is convincing of | evidence th | at additic | n of a di | sinfecta | ant is n | ecessary | for control o | f microbial contaminants) | | Haloacetic Acids
(HAA5) (ppb) | NA | 60 | 0 | NA | | 2010 | No | By-product of drinking water chlorination | | Chlorine (as Cl2)
(ppm) | 4 | 4 | 1.53 | NA | | 2010 | No | Water additive used to control microbes | | TTHMs [Total
Trihalomethanes]
(ppb) | NA | 80 | 80 | NA | | 2004 | No | By-product of drinking water disinfection | | Inorganic Contamin | ants | | | 100 | | | | | | Cyanide [as Free Cn]
(ppb) | 200 | 200 | 1.5 | NA | | 2010 | No | Discharge from plastic and fertilizer factories; Discharge from steel/metal factories | | Antimony (ppb) | 6 | 6 | 0.5 | NA | | 2010 | No | Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder; test addition. | | Arsenic (ppb) | 0 | 10 | 0.5 | NA | | 2010 | No | Erosion of natural deposits;
Runoff from orchards; Runoff
from glass and electronics
production wastes | | Barium (ppm) | 2 | 2 | 0.039 | NA | | 2010 | No | Discharge of drilling wastes;
Discharge from metal
refineries; Erosion of natural
deposits | | Beryllium (ppb) | 4 | 4 | 0.1 | NA | | 2010 | No | Discharge from metal refineries and coal-burning factories; Discharge from electrical, aerospace, and defense industries | | Cadmium (ppb) | 5 | 5 | 0.1 | NA | | 2010 | No | Corrosion of galvanized pipes;
Erosion of natural deposits;
Discharge from metal
refineries; runoff from waste
batteries and paints | | Chromium (ppb) | 100 | 100 | 0.5 | NA | | 2010 | No | Discharge from steel and pulp
mills; Erosion of natural
deposits | | Fluoride (ppm) | 4 | 4 | 0.01 | NA | | 2010 | No | Erosion of natural deposits;
Water additive which
promotes strong teeth;
Discharge from fertilizer and
aluminum factories | | Mercury [Inorganic]
(ppb) | 2 | 2 | 0.0002 | NA | | 2010 | No | Erosion of natural deposits;
Discharge from refineries and
factories; Runoff from
landfills; Runoff from
cropland | the second of th | Selenium (ppb) | 50 | 50 | 0.0025 | NA | 2010 | No | Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines | |---|-----------|-----|--------|----|------|----|--| | Thallium (ppb) | 0.5 | 2 | 0.0005 | NA | 2010 | No | Discharge from electronics, glass, and Leaching from ore-processing sites; drug factories | | Nitrate [measured as
Nitrogen] (ppm) | 10 | 10 | 0.34 | NA | 2010 | No | Runoff from fertilizer use;
Leaching from septic tanks,
sewage; Erosion of natural
deposits | | Nitrite [measured as
Nitrogen] (ppm) | 1 | 1 | 0.05 | NA | 2010 | No | Runoff from fertilizer use;
Leaching from septic tanks,
sewage; Erosion of natural
deposits | | Volatile Organic Cor | itaminant | S | | | | | | | 1,2,4-Trichlorobenze
ne (ppb) | 70 | 70 | 0.5 | NA | 2008 | No | Discharge from textile-finishing factories | | cis-1,2-Dichloroethyl
ene (ppb) | 70 | 70 | 0.5 | NA | 2008 | No | Discharge from industrial chemical factories | | Xylenes (ppm) | 10 | 10 | 0.0005 | NA | 2008 | No | Discharge from petroleum factories; Discharge from chemical factories | | Dichloromethane
(ppb) | 0 | 5 | 5 | NA | 2008 | No | Discharge from pharmaceutical and chemical factories | | o-Dichlorobenzene
(ppb) | 600 | 600 | 0.5 | NA | 2008 | No | Discharge from industrial chemical factories | | p-Dichlorobenzene
(ppb) | 75 | 75 | 0.5 | NA | 2008 | No | Discharge from industrial chemical factories | | Vinyl Chloride (ppb) | 0 | 2 | 0.5 | NA | 2008 | No | Leaching from PVC piping;
Discharge from plastics
factories | | 1,1-Dichloroethylene (ppb) | 7 | 7 | 0.5 | NA | 2008 | No | Discharge from industrial chemical factories | | trans-1,2-Dicholoroet
hylene (ppb) | 100 | 100 | 0.5 | NA | 2008 | No | Discharge from industrial chemical factories | | 1,2-Dichloroethane (ppb) | 0 | 5 | 0.5 | NA | 2008 | No | Discharge from industrial chemical factories | | 1,1,1-Trichloroethane (ppb) | 200 | 200 | 0.5 | NA | 2008 | No | Discharge from metal degreasing sites and other factories | | Carbon Tetrachloride (ppb) | 0 | 5 | 0.5 | NA | 2008 | No | Discharge from chemical plants and other industrial activities | | 1,2-Dichloropropane (ppb) | 0 | 5 | 0.5 | NA | 2008 | No | Discharge from industrial chemical factories | | Trichloroethylene
(ppb) | 0 | 5 | 0.5 | NA | | 2008 |] | No | deg | scharge from metal greasing sites and other tories | |--|------|-----------|-------|-------|-----|----------|-----------|-----------|-----|--| | 1,1,2-Trichloroethane (ppb) | 3 | 5 | 0.5 | NA | | 2008 | 1 | No | | charge from industrial
mical factories | | Tetrachloroethylene (ppb) | 0 | 5 | 0.5 | NA | | 2008 | 1 | No | | scharge from factories and cleaners | | Chlorobenzene
(monochlorobenzene)
(ppb) | 100 | 100 | 0.5 | NA | | 2008 | ו | No | | scharge from chemical and icultural chemical factories | | Benzene (ppb) | 0 | 5 | 0.5 | NA | | 2008 |] | Vo | Lea | scharge from factories;
aching from gas storage
ks and landfills | | Toluene (ppm) | 1 | 1 | 0.5 | NA | | 2008 | | | | charge from petroleum
tories | | Ethylbenzene (ppb) | 700 | 700 | 0.5 | NA | | 2008 | 1 | No | | scharge from petroleum
ineries | | Styrene (ppb) | 100 | 100 | 0.5 | NA | | 2008 | 1 | No | pla | scharge from rubber and
stic factories; Leaching
m landfills | | | | | Your | Sampl | e | # Sampl | es | Excee | ds | | | <u>Contaminants</u> | MCLG | <u>AL</u> | Water | Date | E | xceeding | <u>AL</u> | <u>AL</u> | | Typical Source | | Inorganic Contamina | ants | | | | Ži, | | | | | | | Lead - action level at consumer taps (ppb) | 0 | 15 | 1 | 2008 | | 0 | | No | | Corrosion of household plumbing systems; Erosion of natural deposits | | Copper - action level
at consumer taps
(ppm) | 1.3 | 1.3 | 1.3 | 2008 | | 0 | | No | | Corrosion of household plumbing systems; Erosion of natural deposits | | Term | Definition | |------|--| | ppm | ppm: parts per million, or milligrams per liter (mg/L) | | ppb | ppb: parts per billion, or micrograms per liter (μg/L) | | NA | NA: not applicable | | ND | ND: Not detected | | NR | NR: Monitoring not required, but recommended. | | Term | Definition | |------
---| | MCLG | MCLG: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. | | MCL | MCL: Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. | | TT | TT: Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water. | | AL | AL: Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. | |--------------------------|---| | Variances and Exemptions | Variances and Exemptions: State or EPA permission not to meet an MCL or a treatment technique under certain conditions. | | MRDLG | MRDLG: Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. | | MRDL | MRDL: Maximum residual disinfectant level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. | | MNR | MNR: Monitored Not Regulated | | MPL | MPL: State Assigned Maximum Permissible Level | ## For more information please contact: Contact Name: WILLIAM GILL Address: 215 LIBERTY STREET; EAST OSYKA, MS 39657 Phone: 601-542-5041 Fax: 601-542-5832 E-Mail: osykams1@aol.com # 2010 ANNUAL DRINKING WATER QUALITY REPORT #### Is my water safe? We are pleased to present this year's Annual Water Quality Report (Consumer Confidence Report) as required by the Safe Drinking Water Act (SDWA). This report is designed to provide details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. This report is a snapshot of last year's water quality. We are committed to providing you with information because informed customers are our best allies. #### Do I need to take special precautions? Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791). #### Where does my water come from? Our water source is from two deep wells drawing from the Miocene Series Aquifer. #### Source water assessment and its availability Our source water assessment has been completed. Our wells have had no contamination this past year. For a copy of this report, please contact our office at 601-542-5041. #### Why are there contaminants in my drinking water? Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791). The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity: microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses; organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems; and radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health. #### How can I get involved? If you have questions about this report or concerns about your water utility, please contact Mayor Jamie W. Harrell at 601-542-5041. We want our valued customers to be informed about their water utility. If you want to learn more, please attend our monthly board meeting held on the first Thursday, of each month at 5:45 p.m. #### **Description of Water Treatment Process** Your water is treated by disinfection. Disinfection involves the addition of chlorine or other disinfectant to kill dangerous bacteria and microorganisims that may be in the water. Disinfection is considered to be one of the major public health advances of the 20th century. #### **Water Conservation Tips** Did you know that the average U.S. household uses approximately 400 gallons of water per day or 100 gallons per person per day? Luckily, there are many low-cost and no-cost ways to conserve water. Small changes can make a big difference – try one today and soon it will become second nature. - Take short showers a 5 minute shower uses 4 to 5 gallons of water compared to up to 50 gallons for a bath. - Shut off water while brushing your teeth, washing your hair and shaving and save up to 500 gallons a month. - Use a water-efficient showerhead. They're inexpensive, easy to install, and can save you up to 750 gallons a month. - Run your clothes washer and dishwasher only when they are full. You can save up to 1,000 gallons a month. - Water plants only when necessary. - Fix leaky toilets and faucets. Faucet washers are inexpensive and take only a few minutes to replace. To check your toilet for a leak, place a few drops of food coloring in the tank and wait. If it seeps into the toilet bowl without flushing, you have a leak. Fixing it or replacing it with a new, more efficient model can save up to 1,000 gallons a month. - Adjust sprinklers so only your lawn is watered. Apply water only as fast as the soil can absorb it and during the cooler parts of the day to reduce evaporation. - Teach your kids about water conservation to ensure a future generation that uses water wisely. Make it a family effort to reduce next month's water bill! - Visit www.epa.gov/watersense for more information. #### **Cross Connection Control Survey** The purpose of this survey is to determine whether a cross-connection may exist at your home or business. A cross connection is an unprotected or improper connection to a public water distribution system that may cause contamination or pollution to enter the system. We are responsible for enforcing cross-connection control regulations and insuring that no contaminants can, under any flow conditions, enter the distribution system. If you have any of the devices listed below please contact us so that we can discuss the issue, and if needed, survey your connection and assist you in isolating it if that is necessary. - Boiler/ Radiant heater (water heaters not included) - Underground lawn sprinkler system - Pool or hot tub (whirlpool tubs not included) - Additional source(s) of water on the property - Decorative pond - Watering trough #### **Source Water Protection Tips** Protection of drinking water is everyone's responsibility. You can help protect your community's drinking water source in several ways: - Eliminate excess use of lawn and garden fertilizers and pesticides they contain hazardous chemicals that can reach your drinking water source. - Pick up after your pets. - If you have your own septic system, properly maintain your system to reduce leaching to water sources or consider connecting to a public water system. - Dispose of chemicals properly; take used motor oil to a recycling center. - Volunteer in your community. Find a watershed or wellhead protection organization in your community and volunteer to help. If there are no active groups, consider starting one. Use EPA's Adopt Your Watershed to locate groups in your community, or visit the Watershed Information Network's How to Start a Watershed Team. - Organize a storm drain stenciling project with your local government or water supplier. Stencil a message next to the street drain reminding people "Dump No Waste Drains to River" or "Protect Your Water." Produce and distribute a flyer for households to remind residents that storm drains dump directly into your local water body. ####
Additional Information for Lead If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. TOWN OF OSYKA is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. # **Water Quality Data Table** In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of contaminants in water provided by public water systems. The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. Although many more contaminants were tested, only those substances listed below were found in your water. All sources of drinking water contain some naturally occurring contaminants. At low levels, these substances are generally not harmful in our drinking water. Removing all contaminants would be extremely expensive, and in most cases, would not provide increased protection of public health. A few naturally occurring minerals may actually improve the taste of drinking water and have nutritional value at low levels. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. As such, some of our data, though representative, may be more than one year old. In this table you will find terms and abbreviations that might not be familiar to you. To help you better understand these terms, we have provided the definitions below the table. | <u>Contaminants</u> | MCLG
or
MRDLG | MCL,
TT, or
<u>MRDL</u> | Your
<u>Water</u> | N _a | | Sample
<u>Date</u> | <u>Violation</u> | Typical Source | |---|---------------------|-------------------------------|-----------------------------|----------------|----------|-----------------------|------------------|--| | Disinfectants & Disi | | | allow have no constructions | | | | | | | (There is convincing e | vidence tha | t addition | ı of a disi | nfecta | nt is ne | cessary fo | r control of | microbial contaminants) | | TTHMs [Total
Trihalomethanes]
(ppb) | NA | 80 | 80 | NA | | 2004 | No | By-product of drinking water disinfection | | Volatile Organic Co | ntaminants | • | | | | | | | | 1,2,4-
Trichlorobenzene
(ppb) | 70 | 70 | 0.5 | NA | | 2008 | No | Discharge from textile-
finishing factories | | cis-1,2-
Dichloroethylene
(ppb) | 70 | 70 | 0.5 | NA | | 2008 | No | Discharge from industrial chemical factories | 4 To 1 To 1 To 1 To 1 | Xylenes (ppm) | 10 | 10 | 0.0005 | NA | 2008 | No | Discharge from petroleum factories; Discharge from chemical factories | |---|------|-----|----------------------|------------------|------|----|---| | Dichloromethane
(ppb) | 0 | 5 | 5 | NA | 2008 | No | Discharge from pharmaceutical and chemical factories | | o-Dichlorobenzene
(ppb) | 600 | 600 | 0.5 | NA | 2008 | No | Discharge from industrial chemical factories | | p-Dichlorobenzene (ppb) | 75 | 75 | 0.5 | NA | 2008 | No | Discharge from industrial chemical factories | | Vinyl Chloride (ppb) | 0 | 2 | 0.5 | NA | 2008 | No | Leaching from PVC piping;
Discharge from plastics
factories | | 1,1-Dichloroethylene (ppb) | 7 | 7 | 0.5 | NA | 2008 | No | Discharge from industrial chemical factories | | trans-1,2-
Dicholoroethylene
(ppb) | 100 | 100 | 0.5 | NA | 2008 | No | Discharge from industrial chemical factories | | 1,2-Dichloroethane (ppb) | 0 | 5 | 0.5 | NA | 2008 | No | Discharge from industrial chemical factories | | 1,1,1-Trichloroethane (ppb) | 200 | 200 | 0.5 | NA | 2008 | No | Discharge from metal degreasing sites and other factories | | Carbon Tetrachloride
(ppb) | 0 | 5 | 0.5 | NA | 2008 | No | Discharge from chemical plants and other industrial activities | | 1,2-Dichloropropane (ppb) | 0 | 5 | 0.5 | NA | 2008 | No | Discharge from industrial chemical factories | | Trichloroethylene (ppb) | 0 | 5 | 0.5 | NA | 2008 | No | Discharge from metal degreasing sites and other factories | | 1,1,2-Trichloroethane (ppb) | 3 | 5 | 0.5 | NA | 2008 | No | Discharge from industrial chemical factories | | Tetrachloroethylene (ppb) | 0 | 5 | 0.5 | NA | 2008 | No | Discharge from factories and dry cleaners | | Chlorobenzene
(monochlorobenzene)
(ppb) | 100 | 100 | 0.5 | NA | 2008 | No | Discharge from chemical and agricultural chemical factories | | Benzene (ppb) | 0 | 5 | 0.5 | NA | 2008 | No | Discharge from factories;
Leaching from gas storage
tanks and landfills | | Toluene (ppm) | 1 | 1 | 0.5 | NA | 2008 | No | Discharge from petroleum factories | | Ethylbenzene (ppb) | 700 | 700 | 0.5 | NA | 2008 | No | Discharge from petroleum refineries | | Styrene (ppb) | 100 | 100 | 0.5 | NA | 2008 | No | Discharge from rubber and plastic factories; Leaching from landfills | | <u>Contaminants</u> | MCLG | AL | Your
<u>Water</u> | Sam
<u>Da</u> | | | | | Lead - action level at consumer taps (ppb) | 0 | 15 | 1 | 2008 | 0 | No | Corrosion of household plumbing systems; Erosion of natural deposits | |--|-----|-----|-----|------|---|----|--| | Copper - action level
at consumer taps
(ppm) | 1.3 | 1.3 | 1.3 | 2008 | 0 | No | Corrosion of household plumbing systems; Erosion of natural deposits | # **Undetected Contaminants** The following contaminants were monitored for, but not detected, in your water. | | MCLG | MCL
or | Your | | | |---|--------------------|-----------|-------|------------------|---| | <u>Contaminants</u> | or
<u>MRDLG</u> | MRDL | Water | <u>Violation</u> | Typical Source | | Cyanide [as Free Cn] (ppb) | 200 | 200 | ND | No | Discharge from plastic and fertilizer factories; Discharge from steel/metal factories | | Antimony (ppb) | 6 | 6 | ND | No | Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder; test addition. | | Arsenic (ppb) | 0 | 10 | ND | No | Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes | | Barium (ppm) | 2 | 2 | ND | No | Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits | | Beryllium (ppb) | 4 | 4 | ND | No | Discharge from metal refineries and
coal-burning factories; Discharge from
electrical, aerospace, and defense
industries | | Cadmium (ppb) | 5 | 5 | ND | No | Corrosion of galvanized pipes; Erosion of natural deposits; Discharge from metal refineries; runoff from waste batteries and paints | | Chromium (ppb) | 100 | 100 | ND | No | Discharge from steel and pulp mills;
Erosion of natural deposits | | Fluoride (ppm) | 4 | 4 | ND | No | Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories | | Mercury [Inorganic] (ppb) | 2 | 2 | ND | No | Erosion of natural deposits; Discharge from refineries and factories; Runoff from landfills; Runoff from cropland | | Selenium (ppb) | 50 | 50 | ND | No | Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines | | Thallium (ppb) | 0.5 | 2 | ND | No | Discharge from electronics, glass, and
Leaching from ore-processing sites;
drug factories | | Nitrate [measured as
Nitrogen] (ppm) | 10 | 10 | ND | No | Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits | | Nitrite [measured as
Nitrogen] (ppm) | 1 | 1 | ND | No | Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits | |---|----|-----------|----|----|---| | Haloacetic Acids (HAA5) (ppb) | NA | 60 | ND | No | By-product of drinking water chlorination | | Chlorine (as Cl2) (ppm) | 4 | 4 | ND | No | Water additive used to control microbes | | , , , , , , , , | | <u></u> . | 10 | | | | Unit Descriptions | | |-------------------|--| | Term | Definition | | ppm | ppm: parts per million, or milligrams per liter (mg/L) | | ppb | ppb: parts per billion, or micrograms per liter (μg/L) | | NA | NA: not applicable | | ND | ND: Not detected | | NR | NR: Monitoring not required, but recommended. | | Important Drinking Water Definitions | | |--------------------------------------|---| | Term | Definition | | MCLG | MCLG: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which
there is no known or expected risk to health. MCLGs allow for a margin of safety. | | MCL | MCL: Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. | | TT | TT: Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water. | | AL | AL: Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. | | Variances and Exemptions | Variances and Exemptions: State or EPA permission not to meet an MCL or a treatment technique under certain conditions. | | MRDLG | MRDLG: Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. | | MRDL | MRDL: Maximum residual disinfectant level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. | | MNR | MNR: Monitored Not Regulated | | MPL | MPL: State Assigned Maximum Permissible Level | # For more information please contact: Contact Name: WILLIAM GILL Address: 215 LIBERTY STREET; EAST OSYKA, MS 39657 Phone: 601-542-5041 Fax: 601-542-5832 E-Mail: osykams1@aol.com RECEIVED - WATER SUPP 2011 SEP 23 AM 8: 50 | Mercury
(ppb) | (Inorganie) | 2 | 2 | NA | 2010 | No | Erosion of natural deposits;
Discharge from refineries and
factories; Runoff from
landfills; Runoff from
eropland | |----------------------------------|---------------------|-----|-----|-----|------|----|---| | Selenium | (ppb) | 50 | 50 | NA | 2010 | No | Discharge from petroleum and
metal refineries; Erosion of
natural deposits; Discharge
from mines | | Thallium | | 0.5 | 2 | NA | 2010 | Na | Discharge from electronics,
glass, and Leaching from ore-
processing sites; drug
factories | | | | | | | | | | | 1,2,4-
Trichloro
(ppb) | penzene | 70 | 70 | NA | 2610 | No | Discharge from textile-
finishing factories | | cis-1,2-
Dichloroe
(ppb) | thylene | 70 | 70 | NA | 2010 | No | Discharge from industrial chemical factories | | Xylenes (| ppm) | 10 | 10 | NA | 2010 | No | Discharge from petroleum factories; Discharge from chemical factories | | Dichloror
(ppb) | iethane | 0 | 5 | N.A | 2010 | No | Discharge from pharmaceutical and chemical factories | | o-Dichlor
(ppb) | obenzene | 600 | 600 | NA | 2010 | No | Discharge from industrial chemical factories | | p-Dichlor
(ppb) | benzene | 75 | 75 | NA | 2010 | No | Discharge from industrial chemical factories | | Vinyl Chl | oride (ppb) | 0 | 2 | NA | 2010 | No | Leaching from PVC piping;
Discharge from plastics
factories | | 1,1-Dichle
(ppb) | ro c thylene | 7 | 7 | NA | 2010 | No | Discharge from industrial chemical factories | | trans-1,2-
Dicholoro
(ppb) | ethylene | 100 | 100 | NA | 2010 | No | Discharge from industrial chemical factories | | 1,2-Dichle
(ppb) | roethane | 0 | 5 | NA | 2010 | No | Discharge from industrial chemical factories | | 1,1,1-Tric
(ppb) | nloroethane | 200 | 200 | NA | 2010 | No | Discharge from metal degreasing sites and other factories | | Carbon Te
(ppb) | trachloride | 0 | 5 | NA | 2010 | No | Discharge from chemical plants and other industrial activities | | 1,2-Dichlo
(ppb) | ropropane | ΰ | 5 | NA | 2010 | No | Discharge from industrial chemical factories | | Trichloroe
(ppb) | thylene | Ü | 5 | NA | 2010 | No | Discharge from metal degreasing sites and other factories | | i,1,2-Trichforoethane
(ppb) | 3 | 5 | NA | 2010 | No | Discharge from industrial chemical factories | |---|-----|-----|----|------|----|---| | Tetrachloroethylene
(ppb) | 0 | 5 | NA | 2010 | No | Discharge from factories and dry cleaners | | Chlorobenzene
(monochlorobenzene)
(ppb) | 100 | 100 | NA | 2010 | No | Discharge from chemical and agricultural chemical factories | | Benzene (ppb) | 0 | 5 | NA | 2010 | No | Discharge from factories;
Leaching from gas storage
tanks and landfills | | Toluene (ppm) | 1 |) | NA | 2010 | No | Discharge from petroleum factories | | Ethylbenzene (ppb) | 700 | 700 | NA | 2010 | No | Discharge from petroleum refineries | | Styrens (ppb) | 100 | 100 | NA | 2010 | No | Discharge from rubber and plastic factories; Leaching from landfills | # **Undetected Contaminants** The following contaminants were monitored for, but not detected, in your water. | Coefficia ants | MCLU
de
Muddige | -MEDL | Four
Varer | Vielation | 1) 100
100
100
100
100
100
100
100
100
100 | |-------------------------|-----------------------|-------|---------------|-----------|---| | Chlorine (as Ci2) (ppm) | 4 | 4 | ND | No | Water additive used to control microbes | | Term | Definition | |------|--| | ppm | ppm: parts per million, or milligrams per liter (mg/L) | | ppb | ppb: parts per billion, or micrograms per liter (μg/L) | | NA | NA not applicable | | ND | ND: Not detected | | NR | NR: Monitoring not required, but recommended. | | Term | Definition | |------|---| | MCLG | MCLG: Maximum Contaminant Level Goal; The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. | | MCL | MCL: Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLOs as feasible using the best available treatment technology. | | TT | TT: Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water. | | AL | AL: Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. | | Variances and Exemption | Variances and Exemptions: State or EPA permission not to meet an MCL or a treatment technique under certain conditions. | |-------------------------|---| | MRDLG | MRDLG: Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no known or expected risk to health, MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. | | MRDL | MRDL: Maximum residual disinfectant level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. | | MNR | MNR: Monitored Not Regulated | | MPL | MPL: State Assigned Maximum Permissible Level | # incontrol by comparing the control. Contact Name: GEORGIANN WILDHABER Address: POBOX 38 CHATAWA, MS 39632 Phone: 601-783-3494 #### PROOF OF PUBLICATION #### THE STATE OF MISSISSIPPI PIKE COUNTY | Public Notice | |------------------------| | Osyka Water | | Customers | | The Annual | | Consumer Confidence | | report is complete and | | available to view at | | Osyka Town Hall | | | | Town Clerk | | Hilda Wall | | | PERSONALLY appeared before me, the undersigned notary public in and for Pike County, Mississippi, Nana Morris, An authorized clerk of THE MAGNOLIA GAZETTE, a weekly newspaper as defined and prescribed in Sections 13-3-31 and 13-3-32, of the Mississippi Code of 1972, as amended, who, being duly sworn, states that the notice, a true copy of which is hereto attached, appeared in the issues of said newspaper as follows. Number of Lines/Words Published Times 5 88 Total S <u> Authorized (Nerk of</u> Signed The Magnolia Gazette 1934 SWORN to and subscribed before me the Notary Public FAV Commission Expires: # NOTICE OSYKA WATER CUSTOMERS # THE ANNUAL CONSUMER CONFIDENCE REPORT IS COMPLETE AND AVAILABLE TO VIEW AT OSYKA TOWN HALL. Posting Locations -Town Hall-215 Liberty St: East Town Library - 101 W. Railroad Avel ObyKa Post Office-115 Liberty St; East TOWN CLERK HILDA WALL ## **2010 CCR Contact Information** | Date: 5/27/11 Time: 10:5/ | |--| | PWSID: 570010 | | System Name: OSY/Ca | | Lead/Copper Language Chlorine Residual (MRDL) RAA | | Fluoride GWR Format | | Other | | Violation(S) | | Will correct report & mail copy marked "Corrected copy" to MSDH | | Will notify customers of availability of corrected report on next monthly bill. | | "collect chlains- post correctminates/6:/15-
send moot copy" | | Spoke with family Hull - "will Make Confection tolers" (Operator, Owner) Secretary) | | 5/27/11 L.M. @ office number | # TOWN OF OSYKA 215 Liberty Street; East P. O. Box 23 Osyka, MS 39657 Telephone 601-542-5041 FAX 601-542-5832 May 16, 2011 Mississippi State Department of Health P O Box 1700 Jackson MS 39215-1700 **RE:** Consumer Confidence Report Dear Sir: Please find attached a copy of the Town of Osyka's Consumer Confidence Report and a Public Notice posted in three (3) public places informing the Town's citizens about the report and where they can get a copy. One each was placed at Town Hall, Osyka Post Office
and First Bank lobby. Also enclosed is a copy of the proof of publication that was published in the Magnolia Gazette informing citizens about the CCR. If there are any questions, please notify me. Hilda C. Wall Sincerely, Hilda C. Wall Town Clerk